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ABSTRACT

Spatial heterogeneity represents a general characteristic of the inequitable distributions of spatial
issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among various
strata of explanatory variables by comparing the spatial variance within strata and that between
strata. The geographical detector model is a widely used technique for spatial stratified hetero-
geneity analysis. In the model, the spatial data discretization and spatial scale effects are funda-
mental issues, but they are generally determined by experience and lack accurate quantitative
assessment in previous studies. To address this issue, an optimal parameters-based geographical
detector (OPGD) model is developed for more accurate spatial analysis. The optimal parameters are
explored as the best combination of spatial data discretization method, break number of spatial
strata, and spatial scale parameter. In the study, the OPGD model is applied in three example cases
with different types of spatial data, including spatial raster data, spatial point or areal statistical
data, and spatial line segment data, and an R “GD” package is developed for computation. Results
show that the parameter optimization process can further extract geographical characteristics and
information contained in spatial explanatory variables in the geographical detector model. The
improved model can be flexibly applied in both global and regional spatial analysis for various
types of spatial data. Thus, the OPGD model can improve the overall capacity of spatial stratified
heterogeneity analysis. The OPGD model and its diverse solutions can contribute to more accurate,
flexible, and efficient spatial heterogeneity analysis, such as spatial patterns investigation and
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spatial factor explorations.

1. Introduction

Spatial heterogeneity is a common property of geogra-
phical phenomena. It refers to the uneven distributions
of various geospatial attributes within a certain geogra-
phical area (Fischer 2010; Wang, Zhang, and Fu 2016).
Spatial heterogeneity analysis is widely used in the spa-
tial and spatiotemporal issues in fields of ecology, geol-
ogy, public health, economy, built environment, etc. The
objectives of spatial heterogeneity analysis usually con-
sist of three aspects. The first objective is to explore
spatial clusters that are generally defined as spatially
high or low-value regions (Anselin 1995). Second, spatial
heterogeneity analysis can be used to investigate poten-
tial factors associated with the uneven spatial distribu-
tions (Brunsdon, Fotheringham, and Charlton 1996;
Fotheringham, Brunsdon, and Charlton 2003). The third
objective includes spatial and spatiotemporal prediction
and decision-making based on the spatial heterogeneity
(Wang et al. 2014).

In general, spatial heterogeneity can be measured
from three perspectives. First, spatial heterogeneity
with local clusters is a popular approach that explores
the spatially local clustering regions with similarity in
geographical attributes. For instance, spatial autocorre-
lation indicators, such as local indicators of spatial asso-
ciation (LISA) (Anselin 1995) and Getis-Ord Gi (Getis and
Ord 1992; Ord and Getis 1995), are used to evaluate if
a geographical attribute is spatially clustered. Spatial
scan statistics detect spatial clusters by comparing the
likelihood ratio within and out of dynamically changed
moving windows (Kulldorff 1997). Geographically
weighted regression (GWR) and its extended models
measure geographically local effects by location-wise
coefficients of explanatory variables with distance-
decay weights across space (Fotheringham, Brunsdon,
and Charlton 2003; Brunsdon, Fotheringham, and
Charlton 1996; Huang, Bo, and Barry 2010; Lu et al.
2014, 2017; Ge et al. 2017). The second approach is the
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spatial stratified heterogeneity analysis, which compares
the spatial variance within strata and that between strata
(Wang et al. 2010; Wang, Zhang, and Fu 2016). The
spatial stratified heterogeneity can be quantified by
the geographical detector model (Wang et al. 2010;
Luo et al. 2016). The primary advantage of spatial strati-
fied heterogeneity analysis is that no assumptions are
required for geographical variables and it reflects the
real spatial associations of geographical attributes.
Third, spatial scaling structure heterogeneity is
a method of characterizing complexity of fractal or scal-
ing structure of geographical attributes (Jiang 2013,
2015). Based on the scaling law that far more small
geographical objects exist than large ones, an ht-index
is proposed to measure the spatial scaling structure
heterogeneity (Jiang and Yin 2014).

The geographical detector model is a promising
approach and a primary tool for the spatial stratified
heterogeneity analysis. The main idea of geographical
detectors is that the study space is divided into sub-
regions by variables, and the spatial variance within
each sub-region and among different sub-regions are
compared to evaluate the determinant power of poten-
tial explanatory variables (Wang et al. 2010; Wang,
Zhang, and
Fu 2016). The general geographical detectors include

four parts, where the core part is the factor detector
that quantifies the relative importance of different geo-
graphical variables. Other three parts are interaction
detector, risk detector, and ecological detector.

To comprehensively understand applications and
model improvements of the geographical detector
model, the application trend of the model is reviewed
using the Clarivate Analytics’ Web of Science database in
September 2019. The search is limited to the “English”
language and the “topic” search equation is: “geographi-
cal detector” OR “geographical detectors” OR “geodetec-
tor.” As a result, 130 research papers are yield ranging
from 2010 to 2019. The overview of global research
using the geographical detector model is presented in
Figure 1. The annual variation of research using the
geographical detector model is compared with the var-
iation of papers citing the publication first proposing the
model (Wang et al. 2010), which accumulate to 213
based on the database of the Web of Science. The con-
ceptual structure map generated by the “bibliometrix”
R package (Aria and Cuccurullo 2017) presents primary
application fields of the geographical detector model. In
general, applications of the model are predominant in
geographically local determinants or factors exploration,
and spatial patterns, and heterogeneity investigation.
Research topics can be clustered into three categories.
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Figure 1. Overview of the global research using the geographical detector model regarding the conceptual structure map and annual

distributions of publications.



The first topic is about disease determinants analysis, air
pollution sources studies, and the association between
air pollution and disease. The second one includes cli-
mate change research and land use driving forces
exploration. The last category is water resources and
dynamics modeling, such as runoff and precipitation
variations. In the current stage, applications of the geo-
graphical detector model are primarily clustered in the
fields of public health and environment. Therefore, it is
necessary to broad the application fields of the model to
enhance its capabilities in explaining geographical
objects in other fields and integrating with other mod-
els. Simultaneously, more studies about improving the
model are required for optimal parameters selection and
more flexible, applicable, and effective studies.

In geographical studies, explanatory variables can be
continuous and categorical variables, where the contin-
uous variables should be discretized and converted to
categorical variables in the geographical detector
model. Spatial data discretization is to divide continuous
geographical and geospatial data into several intervals
according to physical or statistical characteristics of the
data, so that the continuous variable is converted to
a categorical variable (Cao, Yong, and Wang 2013). Two
common methods for the spatial data discretization are
supervised and unsupervised discretization methods.
The supervised discretization methods break continuous
variables according to certain statistical regulars, such as
equal breaks, natural breaks, quantile breaks, geometric
breaks and standard deviation breaks. For the unsuper-
vised methods, breaking intervals can be manually
defined. The result of spatial discretization for
a continuous variable is associated with discretization
methods and break numbers (Cao, Yong, and Wang
2013; Ju et al. 2016). Currently, spatial data discretization
process is generally performed in terms of professional
experience instead of data-driven approaches (Ding
et al. 2019; Luo et al. 2019; Duan and Tan 2020). In
addition, the spatial scale effect is common in geogra-
phical issues and may have critical impacts on the spatial
stratified heterogeneity analysis, but it has not been fully
investigated and integrated in the model.

To address the above issues, this study develops an
optimal parameters-based geographical detector
(OPGD) model for improving the accuracy and effective-
ness of spatial analysis. In the OPGD model, the process
of spatial data discretization and spatial scales for spatial
analysis are optimized and the best parameter combina-
tion is determined for the geographical detector model.
The OPGD model can provide flexible and comprehen-
sive solutions with a series of visualizations for more
effective spatial factor explorations, and spatial patterns
and heterogeneity investigation than the geographical
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detectors model. In the study, the OPGD model is
applied in three example cases with different types of
spatial data, including spatial raster data, spatial point or
areal statistical data, and spatial line segment data.

This paper is organized as follows. Section 2 presents
a review of the geographical detector model development
and applications. Section 3 elaborates the developed OPGD
model and its mathematical basis. Section 4 describes dif-
ferent types of spatial data used in three cases for explain-
ing the OPGD model. Section 5, 6 and 7 present the results,
discussion, and conclusions of the study.

2. Optimal parameters-based geographical
detector (OPGD) model

The OPGD model includes five parts: factor detector,
parameters optimization, interaction detector, risk
detector, and ecological detector. The parameters opti-
mization consists of the optimization of spatial discreti-
zation and optimization of spatial scale. The schematic
overview of the OPGD is shown in Figure 2, and five parts
of the model are explained in the following subsections.

2.1. Factor detector

As the core part of geographical detector, the factor
detector reveals the relative importance of explanatory
variables with a Q-statistic. The Q-statistic compares the
dispersion variances between observations in the whole
study area and strata of variables (Wang et al. 2010;
Wang, Zhang, and Fu 2016). The Q value of a potential
variable v is computed by:

)

where N, and o2 are the number and population var-
iance of observations within the whole study area, and
N, and GﬁJ are the number and population variance of
observations within the jth (j=1,..., M) sub-region of
variable v. A large Q value means the relatively high
importance of the explanatory variable, due to a small
variance within sub-regions and a large variance
between sub-regions. In the geographical detector, at
least two samples are required in each of strata to com-
pute mean and variance values.

The F-test is utilized to determine whether the var-
iances of observations and stratified observations are
significantly different, since the transformed Q value
can be tested with the non-central F-distribution:

f_N-M Q
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Figure 2. Schematic overview of the optimal parameters-based geographical detector (OPGD) model.

where M is the number of sub-regions, N is the number
of observations, and 6 is the non-central parameter:

o= [r-i(Em)

where V, is the mean value of observations within the jth
sub-region of variable. Thus, with the given significant
level, the null hypothesis Ho : 07 = 07 ; can be tested by
checking F(M — 1, N — M; ) in the distribution table.

/o’

3)

2.2. Parameters optimization

The parameters optimization consists of the optimiza-
tion of spatial discretization and optimization of spatial
scale. In this study, the OPGD model selects a best com-
bination of discretization method and the break number
for each geographical continuous variable as the opti-
mal discretization parameters. The Q value computed
with the factor detector is used to determine the best
parameter combinations. A set of combinations of dis-
cretization methods and break numbers are provided for
each continuous variable to compute respective Q
values. The optional discretization methods can be
a list of supervised and unsupervised discretization
methods, and optional break numbers can be an integer

sequence in terms of observations and practical require-
ments. As such, the optional combinations can cover
almost all available choices. For a continuous variable,
the parameter combination with the highest Q value
among all combinations is selected for spatial discretiza-
tion, since it presents the highest importance of the
variable from the perspective of spatial stratified
heterogeneity.

The optimization of spatial scale aims at identifying
the optimal spatial scale for the spatial stratified hetero-
geneity analysis. A geographical variable at different
spatial scales probably reveal significantly varied geo-
graphical characteristics (Roth, David Allan, and Erickson
1996; Store and Jukka 2003; Chen et al. 2016). The Q
values of all explanatory variables with respective opti-
mal spatial discretization parameters at various spatial
scales are compared with corresponding spatial scales to
investigate their relationships. The assumption of opti-
mal spatial scale selection is that Q values are the highest
for most explanatory variables. In the study, the 90%
quantile of Q values of all explanatory variables at
a spatial scale is computed and used for the comparison
of overall Q value trends at different spatial scales. For
a set of optional spatial scales, the optimal one is
selected when the 90% quantile of Q values of all expla-
natory variables reach the highest value.
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2.3. Interaction detector

The interaction detector determines the interactive
impacts of two overlapped spatial variables based on the
relative importance of interactions computed with Q values
of the factor detector. A spatial interaction is an overlay of
two spatial explanatory variables. The interaction detector
explores an interaction by the comparison between Q
values of the interaction and two single variables. The
interactions explain whether the impacts of two spatial
variables are weakened, enhanced or independent. The
interaction detector explores five interactions, including
nonlinear-weaken, uni-variable weaken, bi-variable
enhance, independent, and nonlinear-enhance (Wang
et al. 2010; Wang, Zhang, and Fu 2016) (Table 1).
Therefore, the interaction detector result includes both Q
values of interactions and types of interaction effects.

2.4. Risk detector

The risk detector is used to test if spatial patterns repre-
sented by mean values are significantly different among
sub-regions classified by a categorical or stratified vari-
able. The difference between mean values of sub-
regions n and k is tested with the t-test (Wang et al.
2010; Wang, Zhang, and Fu 2016):

_ _ S% 52
ty v = (Y=Y — 4 X 4
Yo=Y (n K)/ N, N (4)
where Y, and Y, are mean values of observations within
sub-regions n and k, s% and s2 are the sample variance,
and N, and Ny are numbers of observations, respectively.

The statistic is approximately distributed as Student’s
t with the degree of freedom of:

2 2 2\ 2 2\ 2
S sz 1 S 1 Sk
df = <N—Z+N—K>/lm <N—'L> +m(/v—>

(5)

Thus, with a given significant level, the null hypothesis
Ho : Yy = Yx can be tested with the student-t distribution
table.
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2.5. Ecological detector

The ecological detector is used to test if an explanatory
variable has a higher impact than another one. The
significance of the different influence of explanatory
variables is tested with the F-statistic (Wang et al. 2010;
Wang, Zhang, and Fu 2016):

My
Nu(Ny = 1) > NU-J'GLZJJ
j=1

F =
M,

Ny(Ny = 1) > Nyjo2;
j=1

where N, and N, are numbers of observations, M, and

MU
i 2
M, are numbers of sub-regions, and »_ N,oy; and
=1
MV
ZNVJO%J are sums of variance within sub-regions of
j=1
variables u and v respectively. Thus, with a given signifi-

cant level, the null hypothesis H : gNuJogJ = gNVJoﬁJ
= =
is tested with the F-distribution table.

In this study, an open-source software package “GD"
in R is developed for systematic computation and visua-
lization of the OPGD model. The general calculation
process, functions, and their relationships in the GD
package are introduced in the Supplementary
Information 1: Overview of the GD package.

3. Data

The OPGD model can be flexibly applied in the spatial
factors exploration and heterogeneity analysis for various
types of spatial data. In this study, three example cases
with different types of spatial data, including spatial raster
data, spatial areal statistical data, and spatial line segment
data, are investigated using the OPGD model (Table 2). The
first case dataset is to investigate the impacts of potential
variables of human actives and climate on the vegetation
changes, where vegetation coverage conditions are quan-
tified by the normalized difference vegetation index
(NDVI), which is a spatial raster variable. The second case
is assessing associations between incidence variations of
influenza A virus subtype H1N1, a spatial point or areal
data, and potential explanatory variables of meteorological

Table 1. Interactions between two explanatory variables and their interactive impacts.

Geographical interaction relationship

Interaction

Qurv < min(Qy, Qy) !

min(QUan) < Quv < maX(QwOv)
max(Ou, Qv) <Qurv < (Qu + Ov)
Ouﬂv = (Ou + Ov)

Ouﬁv > (Ou + Ov)

Nonlinear-weaken: Impacts of single variables are nonlinearly weakened by the interaction of two variables.
Uni-variable weaken: Impacts of single variables are uni-variable weakened by the interaction.

Bi-variable enhance: Impact of single variables are bi-variable enhanced by the interaction.

Independent: Impacts of variables are independent.

Nonlinear-enhance: Impacts of variables are nonlinearly enhanced.

'Q, is the Q value of variable u, Q, is the Q value of variable v, and Q,n, is the Q value of the interaction between variables u and v.
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Table 2. A summary of cases with different types of spatial data.

Case Description Study area

Type of sample Explanatory variables and variable types

Vegetation change Whole area

variables exploration

Impacts of human
activities and climate
on the vegetation
changes

Whole area and sub-
regions

Associations of
meteorological
conditions and
human activities with
H1N1 flu incidences

H1N1 flu incidence
variables exploration

Road damage variables
exploration

Impacts of vehicles and Whole area
environment on road
damage

Variables derived from
raster data

Categorical variables: Climate zone and
mining production

Continuous variables: Temperature change,
precipitation, GDP and population
density

Categorical variable: Geographical region

Continuous variables: Temperature,
precipitation, humidity index,
population density, GDP, road density,
percentage of sensitive people,
percentage of urban population and
medical cost per capita

Categorical variables: Traffic speed and soil
type

Continuous variables: Population within
1 km of road segments and daily traffic
volumes

Spatial point or areal data

Spatial line segment

conditions and human activities. The third case examines
relationships between road damage and variables of vehi-
cles and environment with the spatial line segment data.
Descriptions and data sources of the example cases are
presented in the following subsections.

3.1. Spatial raster data of vegetation changes

A major application topic of the spatial stratified hetero-
geneity analysis is the environment, ecology, and forest
studies (Ren et al. 2014, 2016). In recent years, an increas-
ing number of researches investigate the comprehen-
sive impacts of human activities and climate conditions
on vegetation changes (Du et al. 2017). In this study,
vegetation changes are explored using the spatial
gridded annual mean NDVI changes from 2010 to 2014
in Inner Mongolia, China, where is one of the major
mining regions in China. Respective contributions of
human activities and climate conditions on the NDVI
changes are explored using the OPGD model. The spatial
raster map of NDVI changes and distributions of expla-
natory variables are shown in Figure 3.

The NDVI raster data is derived from the SPOT
Vegetation 1-km NDVI Dataset for China since 1998. The
climate variables include temperature changes and annual
average precipitation from 2010 to 2014, and the climate
zone data. The temperature and precipitation data are
sourced from the Annual Average Temperature Spatial
Interpolation Dataset for China since 1980, and the
Annual Precipitation Spatial Interpolation Dataset for
China since 1980. The datasets of NDVI, temperature and
precipitation are all provided by Data Center for Resources
and Environment Science, Chinese Academy of Sciences
(RESDQ) (http://www.resdc.cn). The climate zone data is
from the CliMond Dataset: World Map of The Koppen-
Geiger Climate Classification (Kriticos et al. 2012). In the
study area, there are five climate zones, including cold

desert climate (Bwk), cold semi-arid climate (Bsk), mon-
soon-influenced humid subtropical climate (Dwa), subtro-
pical highland climate (Dwb), and cold subtropical
highland climate (Dwc). Human activity variables consist
of coal mining production, gross domestic product (GDP)
and population density. County-level annual coal mining
production is the average of coal production data from
2011 to 2014, sourced from the Annual Reports of China
National Coal Association (www.coalchina.org.cn). Since
the data of coal production smaller than 107 ton are not
available, the variable of coal production classifies the
production into five categories, very low, low, medium,
high, and very high, for reasonable spatial comparison
with other explanatory variables. The 1-km gridded GDP
data comes from the Gridded Global Datasets for Gross
Domestic Product and Human Development Index over
1990-2015 (Kummu, Taka, and Guillaume 2018b, 2018a),
and the 1-km gridded population density data is from the
Gridded Population of the World, Version 4 (GPWv4)
(Center for International Earth Science Information
Network — CIESIN — Columbia University 2016). Among
the explanatory variables, climate zone data and coal
mining production are categorical variables, and others
are continuous variables. In addition, six sizes of grids are
generated for the NDVI changes data, including 5 km,
10 km, 20 km, 30 km, 40 km, and 50 km, to examine
which size of grid can better reveal the impacts of potential
variables on the changes of NDVI.

3.2. Spatial point or areal data of HIN1 flu
incidences

Spatial point or areal data are widely used in spatial analy-
sis. This study explores potential variables of HIN1 flu
incidences derived from spatial areal statistical data based
on administrative units. The HIN1 flu incidences are col-
lected with provincial statistics in 2013 in China. The
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explanatory variables include meteorological and environ-
mental variables, and the socio-economic variables. To
investigate spatial scale effects, the analysis is performed
at 50-km, 100-km, and 150-km spatial grids, respectively.
Spatial areal data of H1N1 flu incidences and distributions
of explanatory variables are mapped in Figure 4.

The H1N1 flu incidences data are provincial statistical
data sourced from the China Health Statistical Yearbook
(National Health Commission of the People’s Republic of
China 2014). Explanatory variables contain two cate-
gories: meteorological and environmental variables,
and socioeconomic variables. First, the meteorological
and environmental data include geographical region

and annual average temperature, precipitation, and
moisture index. The Chinese provinces are categorized
into three geographical regions: north-east and north,
central and south, and western China. The annual aver-
age temperature, precipitation and moisture index data
are sourced from the Annual Average Temperature
Spatial Interpolation Dataset for China since 1980, the
Annual Precipitation Spatial Interpolation Dataset for
China since 1980, and the Chinese Meteorological
Background - Humidity Index Data. The datasets of
temperature, precipitation, and humidity index are all
provided by Data Center for Resources and
Environment Science, Chinese Academy of Sciences
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e
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[ INo data L 20.76 ||
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Figure 4. Spatial distributions of HIN1 flu incidences and explanatory variables.
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(RESDQ) (http://www.resdc.cn). In addition, the socio-
economic data consist of the population density, GDP,
road density, percentages of sensitive people (children
and elders), and urban population among total popula-
tion, medical cost per capita, and the urban-rural con-
sumption ratio. The 1-km gridded GDP data comes from
the Gridded Global Datasets for Gross Domestic Product
and Human Development Index over 1990-2015
(Kummu, Taka, and Guillaume 2018b, 2018a), and the
1-km gridded population density data is from the
Gridded Population of the World, Version 4 (GPWv4)
(Center for International Earth Science Information
Network — CIESIN - Columbia University 2016). The
road density map with the spatial resolution of 1 km is
computed with the kernel density function based on the
road network distribution. The populations of child and
the old are the people younger than 14 years old and
older than 65 years old in 2013, respectively (National
Bureau of Statistics of China 2015). The sensitive people
include both child and the old. The percentage of urban
population, medical cost per capita, and the urban-rural
consumption ratio are all sourced from the China
Statistical Yearbook in 2014 (National Bureau of
Statistics of China 2015).

3.3. Spatial line segment data of road damage

In addition to the spatial raster data and point or areal
data, spatial analysis for line segment data is performed
using the OPGD model. In the study, spatial line seg-
ment-based road damage conditions and potential vari-
ables are selected from the road deterioration datasets
in the Wheatbelt region in Western Australia, Australia
(Song et al. 2018, 2019). The road damage conditions are
described with the deflection of pavement, which is
measured with a Dynatest 8000 series Falling Weight
Deflectometer (FWD) and calibrated with Calibration
Method WA 2060.5 by Main Roads, WA (Main Roads
Western Australia 2017a, 2017b). Deflection is
a pavement strength indicator that describes the max-
imum depression on the surface of pavement under
a standard load. Explanatory variables include road
speed limits, soil types, population within 1 km around
the road segments, and annual mean daily volumes of
vehicles. Soil type data is sourced from the State of the
Environment (SoE) Land Australian Soil Classification
Orders dataset in 2016 (Ashton and McKenzie 2001;
State of the Environment in Australia 2017). Population
within 1 km around the road segments is computed with
the population data with 1-km spatial resolution is from
Gridded Population of the World fourth version (GPWv4)

(Center for International Earth Science Information
Network — CIESIN — Columbia University 2016). Traffic
volumes are estimated with a segment-based regression
kriging (SRK) method. The SRK method is an improved
regression kriging method by integrate the spatial mor-
phological characteristics of road segments and regres-
sion kriging model for more accurate spatial prediction
of line segment-based observations, such as traffic and
road attributes (Song et al. 2019).

4. Results
4.1. Spatial raster data of vegetation changes

In this study, spatial explanatory variables of vegetation
changes are investigated using the OPGD model. The
OPGD model can simultaneously deal with both catego-
rical and continuous explanatory variables in practical
spatial analysis, where categorical variables can be
directly used in the geographical detector model, but
continuous variables should be discretized with optimal
parameters before modeling. Thus, the first step of the
OPGD model is the spatial discretization parameters
optimization for continuous variables (Figure 5). Results
show that the optimal parameter combinations of dis-
cretization methods and break numbers are varied for
different explanatory variables. The optimal parameter
combination for temperature change, precipitation, and
GDP is the natural break with seven intervals, and that
for population density is the quantile break with seven
intervals. With the spatial discretization parameters, con-
tinuous variables are converted to strata variables, which
are equivalent to categorical variables in the geographi-
cal detector model. Codes and completed analysis
results are provided in the Supplementary Information
2: Computation process of example cases.

The next step is to identify contributions of single
variables on vegetation changes using the factor detec-
tor. Factor detector results include Q values, correspond-
ing significances, and ranks of variables, where the
variable (precipitation) with the highest Q value com-
pared with other explanatory variables is highlighted
(Figure 6).

In the third step, the risk detector provides risk means of
spatial zones determined by variables and tests if the risk
means of various spatial zones are significantly different
(Figure 7). Risk detector results show that data within dif-
ferent intervals of an explanatory variable have significantly
varied effects on vegetation changes. For instance, vegeta-
tion change in the cold subtropical highland climate (Dwc)
region is 0.445, but that in the cold desert climate (Bwk)
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Figure 6. OPGD-based explanatory variables exploration of
vegetation changes: Contributions of single variables on vegeta-
tion changes investigated by the factor detector.

region is 0.005. To further investigate risk regions of vegeta-
tion changes, spatial distributions of risks determined by
explanatory variables are mapped in Figure 7(b). The vari-
ables determined mean vegetation changes are classified
into three levels: high values (red), medium values (gray),
and low values (blue). Spatial patterns of risk regions
explored by variables tend to be similar that the vegetation
change in the eastern region is relatively high and that in
the western region is low. However, local patterns explored
by various variables are different. For instance, in the north-
east region, climate variables, including climate zone, tem-
perature change, and precipitation, have more effects on
vegetation changes compared with other variables. In the
eastern and southern regions, high vegetation changes are

closely associated with human activities, such as GDP and
population density.

The last two parts are interactions between variables
explored by the interaction detector (Figure 8(a)), and the
ecological matrix derived by the ecological detector (Figure
8(b)). In the interaction effect analysis, the interaction with
the highest Q value (0.915) is that between precipitation
and mining activities. The intermediate computation pro-
cesses the t-test for risk detector, interactions explored by
the interaction detector, and the F-test for ecological detec-
tor are presented in the Supplementary Information 2.

Finally, when spatial units are grids, a common method
for selecting a reasonable grid size is to compare size
effects of spatial units using the factor detector. In the
studly, six sizes of gridded data are contained in the vegeta-
tion changes dataset. Figure 9 shows the comparison of the
size effects of spatial units. Results show that the Q values
of most of the variables are increased from the 5-km to 40-
km spatial unit. The 90% quantile of Q values reaches to the
highest value when the spatial unit is 40 km and becomes
lower after 40-km spatial unit. Thus, we recommend using
40 km as an optional spatial unit for the spatial stratified
heterogeneity analysis.

In summary, this case study has following findings
according to the OPGD-based analysis. First, 40-km spatial
grid is an optimal spatial unit for assessing impacts of
human activities and climate change on vegetation
changes in the study area. In addition, precipitation is the
variable with the highest association with the vegetation
change. Precipitation and mining activities are enhanced by
each other in affecting vegetation change, and their inter-
action is the major interactive variables in the study area.
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Figure 7. OPGD-based explanatory variables exploration of vegetation changes: Vegetation changes in variable determined spatial
zones computed by the risk detector, including risk mean values (a), spatial distributions of high, medium, and low levels of mean
vegetation changes (b), and the risk detector result (c).



(a)
Population density )
GDP o
Precipitation — 0.9148
Temperature change -
Mining
eI qI Q,I T T
e &R
& L S &
& L R
& ¢ L
S g &
Interaction of two variables Q value
« Nonlinear-enhance * 022
Bi-variable enhance ® 066
@® o091

GISCIENCE & REMOTE SENSING (&) 11

(b)
Populationdensity 4 N N N N 'Y
GDPH4 N 'N N N
Precipitation 4 'Y | Y | Y
Temperature change { ' N | Y
Mining 4 | N
®I T Q,I T T
&8s &5
@ N OO0
G K K

Figure 8. OPGD-based explanatory variables exploration of vegetation changes: Interaction detector (a) and ecological detector (b)

results.

0.8 —
Climatezone

0.6

Qvalue
L]

20

5 3 °
uantile|

— 0.84
4]
L 083 3
e
(®)
N
o
- 082
€
©
o
g A~ 081 <
o
o
2
- 0.80 £

IRVt * 079

| T
30 40 50

Size of spatial unit (km)

Figure 9. Comparison of size effects of spatial units for Q values and the 90% quantile of explanatory variables.

The variation of vegetation in the north-eastern regions is
closely associated with climate variables, and that in the
eastern and southern regions is linked with human activity
variables, such as GDP and population density.

4.2. Spatial point or areal data of HIN1 flu
incidences

The HIN1 flu incidences case is used to demonstrate the
OPGD-based analysis for point or areal data, and the
comparison of spatial analysis for the whole study area
(section 4.2.1) and for geographical sub-regions (section

4.2.2). Full results of the OPGD-based analysis are pro-
vided in the Supplementary Information 2.

4.2.1. In the whole study area

In the study, 13 potential explanatory variables are col-
lected for the analysis of HIN1 flu incidences. The geogra-
phical region is a categorical variable, and other
environmental and socio-economic conditions presented
in Figure 4 are all continuous variables. Results of spatial
analysis in the whole study area are presented in Figure 10.
The OPGD-based analysis for the whole study area consists
of six parts: spatial scale effects analysis, spatial discretiza-
tion optimization, factor detector, risk detector, interaction


User
高亮


12 (&) Y.SONG ET AL.

Temperature
@, 0460 4 (b) P
b
0455C
9] . i 0450“0‘ 207
73 3_.urbanpop"“ 4 § s ' E‘
2 Lo44sE | € . =
S o] @ Natura 2 10—
0.29. al-0440 T 035" quantile &
ap =
humi <)
0.1 90% quantile\ | 04358 0.30
. < 0
I0 1l00 1I50 - I 5‘3 é I l l SI 1|5 ‘
Size of spatial unit (km) Number of intervals - Temperature (°C)
(c) temp OE00] (d) Mean risk from temperature
medicost 0.4557 Temperature i i
senseBnp S 1-7.09-274] [l High Medium Low odata
prec 04191] (2740611 ] 1000
urbanpop 0.3429 (1.61,5.96] k
rdds 0.2385 (5.96,10.3]
gdpd [ 102106 (103,14.7) |
popd 1 02062 (147,19 ]
humi 0.1735 19,2341
Georegion [] 0.074 (19,23.4) [
0.0 0.5 1.0 1.5
e e 02 A I8 Mean incidence (1/100 000)
(e) Temperature (f) g
Georegion e0o 0000 Georegion-{ NN N NN NN NN
(19,2341 S S N I I medicost - ® 0.794 medicost NN Y Y Y Y NY
147,19 urbanpop - urbanpop- N N Y ¥ Y Y N
¢ 11 1 I I sensepop sensepop-{ NN |[Y Y Y Y
(103,14.7]1 BN I I PN rdds B rdds-{ N N N N N
(5961031 'y [y |y gdpd ~ ® 053 gdpd - 'N/NN|N
popd - ° @ 0.79 popd- N N N
(1.61,596]91 ¥ Y humi . Enh?nce, humi 4 IN'N
nonlinear
(2741611 [N precsy Enhance, bi— prec- I
T T T T T T T T T T T T T T T T
L— T T temp gdpd medicost temp gdpd medicost
[-7.09,-2.74] (14.7,19] Variable Variable
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detector, and ecological detector. The comparison of size
effects indicates that relative impacts of meteorological
and socio-economic factors are varied with the change of
spatial units. In general, Q values of variables temperature,
medical cost, and percentage of sensitive population are
major contributors to the flu incidence, and they reach the
maximum values when the spatial unit is 100 km. The 90%
quantiles of Q values show a similar trend. Thus, we
recommend choosing 100 km as the optimal spatial unit
for spatial analysis. In detail, temperature is the primary
contributor to the HIN1 flu incidences. The socio-
economic variables medical cost and percentage of sensi-
tive population have higher impacts than meteorological
variable precipitation when the spatial unit is smaller than
100 km. The impact of road density is continuously
increased with the increase of spatial unit, since the
spreading of flu becomes easier with the growth of spatial
accessibility of road network that presented by the
increase of road density. In the spatial analysis under the
100-km spatial unit, the optimal parameter combination
for spatial discretization is selected for each continuous
variable. In Figure 10, the temperature variable is used as
an example to present the process and result of discretiza-
tion optimization. The selected optimal combinations of
discretization method and break number of all explanatory

variables are listed in the Supplementary Information.
Results of geographical detectors show that temperature
is the major contributor to the flu incidence with the
contribution of 49.09%, where southern region is of high
temperature driven risks. Effects of the medical cost and
percentage of sensible population are enhanced by each
other, and their interaction can contribute 79.4% of flu
incidence variations.

4.2.2. In sub-regions

The OPGD model can be flexibly utilized in terms of
objectives of research and characteristics of spatial
data. This section presents an example that the study
area is divided into three sub-regions based on geogra-
phical regions, and the OPGD-based analysis are per-
formed in the sub-regions, respectively.

Figure 11 shows the spatial analysis for HIN1 flu inci-
dences in sub-regions. Results include four parts of geo-
graphical detectors and size effects of spatial unit. Steps of
the spatial scale optimization and spatial discretization
optimization are similar to processes of the whole study
area analysis, and they are presented in the Supplementary
Information 2. Spatial units are respectively determined for
the spatial analysis of three sub-regions according to the
comparison of spatial scale effects. The geographical
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Figure 11. Spatial analysis for HIN1 flu incidences in the sub-regions: (a) northeast and north; (b) central and south and (c) western

China.

detector results show that primary explanatory variables
and interactive variables are varied among sub-regions. In
the northeast, northern and western regions (Figure 11(a,
), socio-economic variables and interactions are major
contributors to the flu incidence. In the northeast and
northern regions (Figure 11(a)), the percentage of urban
population contributes most to the flu incidence, and the
interaction between percentage of urban population and
medical cost per capita has the highest association with flu
incidence. In the western region (Figure 11(c)), medical cost
per capita is the primary single explanatory variable, and
the interaction between percentage of urban population
and precipitation is the major interactive variable of the flu
incidence. However, in central and south regions (Figure 11
(b)), meteorological variables have higher associations with
flu incidence than socio-economic variables. Precipitation,
temperature, and humidity are top three variables with
relatively high associations with flu incidence in central
and south regions. The interaction between precipitation
and percentage of sensitive population is the primary inter-
active variable of flu incidence.

4.3. Spatial line segment data of road damage

To explore potential variables of road damage, the OPGD
model is applied in the analysis for spatial line segment-
based road damage data. Figure 12 shows the OPGD-
based spatial analysis results, including the spatial

discretization optimization and geographical detectors.
Computation process and intermediate results are sum-
marized in the Supplementary Information 2. Optimal
discretization parameter combinations for the local popu-
lation and traffic vehicles are quantile breaks with five
intervals and equal breaks with seven intervals. Result of
factor detector shows that soil type contributes most to
the road damage compared with other variables. Soil
type can explain 19.5% of road damage conditions.
Results of risk detector indicate that the road segments
at the soil type of Podosol have the highest risk of road
damage, and those at the soil type of Kandosol have the
relatively lowest risk. The interaction detector reveals the
impacts of interactions of variables, where the interaction
between volumes of vehicles and soil type has the high-
est contribution (47.12%) that is nonlinearly enhanced by
the single variables. Results of ecological detector
demonstrate that the impacts of road speed limit are
significantly different from other variables.

5. Discussion

This study develops an OPGD model for spatial stratified
heterogeneity analysis, which is an improvement of the
geographical detector model by integrating the para-
meters optimization. The primary contribution is that the
OPGD model can reveal more geographical
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Figure 12. Spatial analysis for road damage conditions. (a) Processes and results of spatial discretization optimization for continuous
variables; (b) factor detector; (c) risk detector; (d) interaction detector; and (e) ecological detector.

characteristics and information through the parameter
optimization process for spatial discretization and spatial
scale. The identification of characteristics of geographi-
cal attributes can support more accurate and effective
spatial patterns and heterogeneity exploration. In addi-
tion, applications of the OPGD model in different types
of spatial data, including spatial raster data, spatial point
or areal data, and spatial line segment data, demonstrate
that more findings can be provided from the perspec-
tives of spatial associations and regional investigations
by the analysis based on the in-depth geographical
characteristics and information. The innovative findings
are critical for practical spatial data analysis and support
regional decision-making.

In the first case, the OPGD-based spatial analysis pro-
vides accurate evidence for regional and interactive
impacts of potential variables of vegetation changes.
First, for continuous variables, the OPGD model provides
an optimization method for determining the best para-
meter combinations of spatial discretization parameters
and spatial scale parameter. In most of the previous
research, both types of spatial parameters are manually

determined in the geographical detector model (Ding
et al. 2019; Luo et al. 2019; Duan and Tan 2020). The
optimal combinations of discretization method and
break number for explanatory variables can reveal
more approximately real associations between depen-
dent and independent spatial variables. In the case, 40-
km grid is selected as the optimal spatial scale for the
vegetation change variables exploration, which is
approximate to the spatial units that have been used in
vegetation studies at large spatial ranges (Saidaliyeva
et al. 2017; Rodriguez-Fernandez et al. 2018). The pro-
cess of spatial scale parameter optimization can indicate
spatial scale effects during the analysis, and the optimal
parameter demonstrates a more reasonable spatial unit
for spatial analysis. In addition, geographically regional
and interactive impacts of potential variables on vegeta-
tion changes in the study area are investigated. From the
perspective of regional effects of variables, the associa-
tion between vegetation changes and potential vari-
ables is significantly varied in different regions. In north-
eastern regions, the vegetation change is closely asso-
ciated with climate variables, because forest and



grassland are major land use types and they are sensitive
to temperature and precipitation (Li et al. 2018). In the
eastern and southern regions, the vegetation change is
linked with human activities, such as GDP and popula-
tion density. This result is mainly caused by the high
dense human activities, low forest coverage, and large
areas of steppe desert, which is not sensitive to the
climate change (Li et al. 2018; Yin et al. 2018). From the
perspective of interactive effects of variables, the inter-
action of precipitation and mining activities is the major
interaction variable in the study area, and they are
enhanced by each other in affecting vegetation change.
It has been widely confirmed that that climate condi-
tions and human activities have combined effects on
vegetation changes (Brandt et al. 2017, Wang et al.
2018; Zheng et al. 2019), but the OPGD-based spatial
analysis in this study provides a quantitative comparison
between effects of single variables and variable interac-
tions from a spatial perspective.

The second case demonstrates that the OPGD model
can be flexibly applied in spatial variables exploration
in both the whole study area and geographical sub-
regions. In the whole study area, temperature is the
major contributor to the flu incidence, where southern
high-temperature region is of high risks driven by tem-
perature. High temperature and extreme weather
usually link with outbreaks of HIN1 flu (Xiao et al.
2013; Chowell et al. 2012; Li, Song, and Wang 2009).
Effects of the medical cost and percentage of sensible
population are enhanced by each other. The close
association between the H1N1 flu with socioeconomic
conditions indicates the essential role of public health
resources in the variation of flu incidence
(Ponnambalam et al. 2012; Kumar et al. 2015; Mulinari
et al. 2018). Compared with previous studies, this study
provides more details about geographically regional
effects of explanatory variables of the flu incidence. In
the northeast, northern, and western regions, socio-
economic variables and interactions are major contri-
butors to the flu incidence, but in central and south
regions, meteorological variables have higher associa-
tions with flu incidence than socio-economic variables.

The OPGD-based spatial line segment data analysis in
the third case indicates the comprehensive impacts of
traffic volumes and environment on road damage. The
spatial analysis consists of two major findings. First, soil
type contributes most to the road damage compared
with traffic conditions and population distributions. In gen-
eral, different soil types have significantly varied capacity to
bear road damage and potential vulnerability to rut forma-
tion (Mohtashami et al. 2017). Another finding is that the
interaction between traffic volumes and soil type has the
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highest contribution (47.12%) to road damage, and they
are nonlinearly enhanced by each other.

Finally, this study provides an open-source software
“GD" package in R for more flexible, efficient, and user-
friendly computation of the OPGD model. The package
can provide sufficient details during computation and gen-
erate diverse statistics and visualizations of spatial analysis
results. Meanwhile, computation speed can be significantly
improved by the package. A simulation data is sampled
from the disease mapping case of the Excel-based software
(http://www.geodetector.org/), and it contains three expla-
natory variables for disease incidence. Results show that the
time-consuming is linearly increased with the number of
samples. When the sample size reaches to 1000, 10 000, 100
000, only 0.05s,0.14 s, and 1.55 s are used for simultaneous
computation of four parts of geographical detectors by the
GD package, respectively. The package has strong capabil-
ity in dealing with big quantity spatial data. More sample
units will improve the accuracy, but the marginal benefit
might be tiny if sample units are large than 50-100 in each
stratum.

6. Conclusions

This study demonstrates that the parameter optimization
can further extract information contained in geographical
explanatory variables for the geographical detector model.
The developed OPGD model improves the capacity of the
geographical detector model with a parameter optimiza-
tion method to optimize both spatial discretization para-
meters (discretization method and break number) and the
spatial scale parameter. The OPGD model can provide
a comprehensive solution for spatial stratified heterogene-
ity analysis through more accurate and effective extraction
of geographical characteristics of explanatory variables.
The developed open-source software package can show
a full picture of the spatial stratified heterogeneity analysis
at all stages. The OPGD-based analysis for three example
cases with different types of spatial data provide compre-
hensive benchmarks for broadening application scenarios,
ways, and fields.
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